Precise Control over the Rheological Behavior of Associating Stimuli-Responsive Block Copolymer Gels

نویسندگان

  • Jérémy Brassinne
  • Flanco Zhuge
  • Charles-André Fustin
  • Jean-François Gohy
چکیده

“Smart” materials have considerably evolved over the last few years for specific applications. They rely on intelligent macromolecules or (supra-)molecular motifs to adapt their structure and properties in response to external triggers. Here, a supramolecular stimuli-responsive polymer gel is constructed from heterotelechelic double hydrophilic block copolymers that incorporate thermo-responsive sequences. These macromolecular building units are synthesized via a three-step controlled radical copolymerization and then hierarchically assembled to yield coordination micellar hydrogels. The dynamic mechanical properties of this particular class of materials are studied in shear flow and finely tuned via temperature changes. Notably, rheological experiments show that structurally reinforcing the micellar network nodes leads to precise tuning of the viscoelastic response and yield behavior of the material. Hence, they constitute promising candidates for specific applications, such as mechano-sensors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dual stimuli-responsive Fe3O4 graft poly(acrylic acid)-block-poly(2-methacryloyloxyethyl ferrocenecarboxylate) copolymer micromicelles: surface RAFT synthesis, self-assembly and drug release applications

BACKGROUND Stimuli-responsive polymer materials are a new kind of intelligent materials based on the concept of bionics, which exhibits more significant changes in physicochemical properties upon triggered by tiny environment stimuli, hence providing a good carrier platform for antitumor drug delivery. RESULTS Dual stimuli-responsive Fe3O4 graft poly(acrylic acid)-block-poly(2-methacryloyloxy...

متن کامل

Broad-wavelength-range chemically tunable block-copolymer photonic gels.

Responsive photonic crystals have been developed for chemical sensing using the variation of optical properties due to interaction with their environment. Photonic crystals with tunability in the visible or near-infrared region are of interest for controlling and processing light for active components of display, sensory or telecommunication devices. Here, we report a hydrophobic block-hydrophi...

متن کامل

Thermo-responsive Diblock Copolymer Worm Gels in Non-polar Solvents

Benzyl methacrylate (BzMA) is polymerized using a poly(lauryl methacrylate) macromolecular chain transfer agent (PLMA macro-CTA) using reversible addition-fragmentation chain transfer (RAFT) polymerization at 70 °C in n-dodecane. This choice of solvent leads to an efficient dispersion polymerization, with polymerization-induced self-assembly (PISA) occurring via the growing PBzMA block to produ...

متن کامل

Structure and Mechanical Response of Protein Hydrogels Reinforced by Block Copolymer Self-Assembly.

A strategy for responsively toughening an injectable protein hydrogel has been implemented by incorporating an associative protein as the midblock in triblock copolymers with thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) endblocks, producing materials with a low yield stress necessary for injectability and durability required for load-bearing applications post-injection. Responsive rein...

متن کامل

Dual stimuli-responsive coating designed through layer-by-layer assembly of PAA-b-PNIPAM block copolymers for the control of protein adsorption.

In this paper, we describe the successful construction, characteristics and interaction with proteins of stimuli-responsive thin nanostructured films prepared by layer-by-layer (LbL) sequential assembly of PNIPAM-containing polyelectrolytes and PAH. PAA-b-PNIPAM block copolymers were synthesized in order to benefit from (i) the ionizable properties of PAA, to be involved in the LbL assembly, an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015